## ERRATA

## **THERMAL RADIATION HEAT TRANSFER**

## JOHN R. HOWELL. M. PINAR MENGÜÇ, KYLE DAUN, AND ROBERT SIEGEL CRC-TAYLOR AND FRANCIS 7<sup>TH</sup> EDITION, 2021

## Page Correction

| 47  | Eq. (1.85)   | The upper limit of the integral should be $\lambda$ , not $\infty$ .                                                                                                                                                                                  |
|-----|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 65  | Figure 2.7   | Interchange $d\Omega_i$ and $d\Omega$ in parts (a) and (b).                                                                                                                                                                                           |
|     |              | Figure caption should now read:                                                                                                                                                                                                                       |
|     |              | FIGURE 2.7: Equivalent ways of showing energy from $dA_i$<br>that is incident on dA. (a) Incidence within solid angle<br>$d\Omega$ having origin at dA <sub>i</sub> ; incidence within solid angle $d\Omega_i$<br>having origin at dA.                |
| 158 | Figure 4.2   | The two vertical lines labelled $l\cos\beta$ should be labelled $l\sin\beta$                                                                                                                                                                          |
| 174 | Example 4.13 | First equation should read:                                                                                                                                                                                                                           |
|     |              | $A_1F_{1-2} + A_1F_{1-3} = A_1;  A_2F_{2-1} + A_2F_{2-3} = A_2;  A_3F_{3-1} + A_3F_{3-2} = A_3$                                                                                                                                                       |
| 378 | Eq. (8.82)   | Should read:                                                                                                                                                                                                                                          |
|     |              | $\rho(\theta_{i}) = \frac{\rho_{\perp}(\theta_{i}) + \rho_{\parallel}(\theta_{i})}{2} = \frac{1}{2} \left[ \frac{\tan^{2}(\theta_{i} - \chi)}{\tan^{2}(\theta_{i} + \chi)} + \frac{\sin^{2}(\theta_{i} - \chi)}{\sin^{2}(\theta_{i} + \chi)} \right]$ |
|     |              | $=\frac{1}{2}\frac{\sin^{2}(\theta_{i}-\chi)}{\sin^{2}(\theta_{i}+\chi)}\left[1+\frac{\cos^{2}(\theta_{i}+\chi)}{\cos^{2}(\theta_{i}-\chi)}\right]$                                                                                                   |
| 384 | Eq. (8.111)  | Should read:                                                                                                                                                                                                                                          |

$$\epsilon_{\rm II} = {\rm Im}(\chi_{\rm e}) = \frac{\omega_{\rm p}^2 \zeta \omega}{\left(\omega_0^2 - \omega^2\right)^2 + \zeta^2 \omega^2}$$

| 386 | Eq. (8.118)         | The zeta ( $\zeta$ ) should be tau ( $\tau$ ).                                                                                                                                           |
|-----|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 415 | Example 9.1         | The first line of the second paragraph should read:                                                                                                                                      |
|     |                     | Relations from the exponential wide-band model for $\alpha$ , $\beta$ , and $\omega$ , and the transition (-1, 0, 1) are used. (See the footnote for the 9.4 $\mu$ m band in Table 9.2). |
| 470 | First line of text: | Replace $\pm \infty$ with $\pm 1$ .                                                                                                                                                      |
| 644 | Section 14.2.2      | Replace all $\beta^{k}$ with $\hat{u}^{k}$                                                                                                                                               |
| 668 | In Figure 14.11,    | In the trapezoid for $\Omega$ , switch the "yes" and "no" labels on the output arrows.                                                                                                   |
|     |                     |                                                                                                                                                                                          |

in the bottom trapezoid, replace " $\mu > 1$ ?" with " $\mu > 0$ ?".

Replace Figure 14.12 with the figure below:



686 Line after Eq. (15.5): replace  $\vartheta(0) = 0$  with  $\vartheta(0) = 1$ .

890 *Source*: should read Tiesinga et al., NIST, 2020.

On-Line Appendix P

Problem P.7.8: Solution should be 4.47 hr.