ERRATA

THERMAL RADIATION HEAT TRANSFER

JOHN R. HOWELL. M. PINAR MENGÜÇ, KYLE DAUN, AND ROBERT SIEGEL
 CRC-TAYLOR AND FRANCIS
 $7^{\text {TH }}$ EDITION, 2021

Page Correction

47

Figure 4.2

Example $4.13 \quad$ First equation should read:

$$
A_{1} F_{1-2}+A_{1} F_{1-3}=A_{1} ; \quad A_{2} F_{2-1}+A_{2} F_{2-3}=A_{2} ; \quad A_{3} F_{3-1}+A_{3} F_{3-2}=A_{3}
$$

Should read:

$$
\begin{aligned}
\rho\left(\theta_{\mathrm{i}}\right)=\frac{\rho_{\perp}\left(\theta_{\mathrm{i}}\right)+\rho_{\|}\left(\theta_{\mathrm{i}}\right)}{2} & =\frac{1}{2}\left[\frac{\tan ^{2}\left(\theta_{\mathrm{i}}-\chi\right)}{\tan ^{2}\left(\theta_{\mathrm{i}}+\chi\right)}+\frac{\sin ^{2}\left(\theta_{\mathrm{i}}-\chi\right)}{\sin ^{2}\left(\theta_{\mathrm{i}}+\chi\right)}\right] \\
& =\frac{1}{2} \frac{\sin ^{2}\left(\theta_{\mathrm{i}}-\chi\right)}{\sin ^{2}\left(\theta_{\mathrm{i}}+\chi\right)}\left[1+\frac{\cos ^{2}\left(\theta_{\mathrm{i}}+\chi\right)}{\cos ^{2}\left(\theta_{\mathrm{i}}-\chi\right)}\right]
\end{aligned}
$$

Eq. (8.111)
The upper limit of the integral should be λ, not ∞.
Interchange $\mathrm{d} \Omega_{\mathrm{i}}$ and $\mathrm{d} \Omega$ in parts (a) and (b).
Figure caption should now read:
FIGURE 2.7: Equivalent ways of showing energy from dA_{i} that is incident on dA. (a) Incidence within solid angle $d \Omega$ having origin at $d A_{i}$; incidence within solid angle $d \Omega_{i}$ having origin at dA.
The two vertical lines labelled $l \cos \beta$ should be labelled $l \sin \beta$

Eq. (8.82)

Should read:

$$
\epsilon_{\mathrm{II}}=\operatorname{Im}\left(\chi_{\mathrm{e}}\right)=\frac{\omega_{\mathrm{p}}^{2} \zeta \omega}{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\zeta^{2} \omega^{2}}
$$

In Figure 14.11, In the trapezoid for Ω, switch the "yes" and "no" labels on the output arrows.
in the bottom trapezoid, replace " $\mu>1$?" with " $\mu>0$?".

Replace Figure 14.12 with the figure below:

Line after Eq. (15.5): replace $\vartheta(0)=0$ with $\vartheta(0)=1$.

Source: should read Tiesinga et al., NIST, 2020.
On-Line Appendix P
Problem P.7.8: \quad Solution should be 4.47 hr .

