ERRATA

THERMAL RADIATION HEAT TRANSFER, $5^{\text {TH }}$ Edition, $1^{\text {st }}$ Printing John R. Howell, Robert Siegel, M. Pinar Mengüç

Page

15 Three lines before Eq. (1.7), $I_{\lambda b}$ should be $I_{\lambda b, n}$
18 Example 1.2, in the equation, $I_{\lambda}(0.55 \mu \mathrm{~m})$ should be $I_{\lambda b}(0.55 \mu \mathrm{~m})$
19
On Figure 1.11, label on vertical axis should be Spectral blackbody emissive power $\left(W / m^{2} \cdot \mu m\right)$
22 Line before Eq. (1.25), "(Equation 1.22)" should be "(Equation 1.24)"; two lines after Eq. (1.25), $\lambda_{\max }$ should be $I_{\lambda_{\max } b}$

26 Second line, $E_{\lambda_{1} T \rightarrow \lambda_{2} T}$ should be $F_{\lambda_{1} T \rightarrow \lambda_{2} T}$
Line before Eq. (1.36), "(Equation 1.35)" should be "(Equation 1.34)"
In footnote, "(Equation 11.3)" should be "(Equation 1.37)"
First sentence in Section 1.6.3: "(Equation 1.40)" should be "(Equation 1.37)"
34-5 Fig. 1.17 should be replaced with figure below:

36 Line 6, "intensity in direction ($\left.\theta_{\mathrm{i}}, \phi_{\mathrm{i}}\right) . .$. " should be changed to "intensity in direction (θ, ϕ)..."
Line below Equation 1.57, reword as "...the scattering phase function, which is a measure of the amount of radiating energy propagating in $\Omega_{i}\left(\theta_{i}, \phi_{i}\right)$ that is redirected into $\Omega(\theta, \phi)$, and can be......"
37 In equations (1.63) and (1.64), the last minus sign (on the integral terms) should be changed to plus.

60 In Figure 2.7, interchange $\mathrm{d} \Omega_{\mathrm{i}}$ and $\mathrm{d} \Omega$ in parts (a) and (b).
Figure caption should now read:
FIGURE 2.7: Equivalent ways of showing energy from dA_{i} that is incident on dA . (a) Incidence within solid angle $d \Omega$ having origin at $d A_{i}$; incidence within solid angle $d \Omega_{i}$ having origin at dA.

In Eq. (3.10), θ should be θ_{i}
Eq. (3.11a) should be:

$$
\rho_{\lambda, \|}\left(\theta_{i}\right)=\frac{a^{2}+b^{2}-2 a \sin \theta_{i} \tan \theta_{i}+\sin ^{2} \theta_{i} \tan ^{2} \theta_{i}}{a^{2}+b^{2}+2 a \sin \theta_{i} \tan \theta_{i}+\sin ^{2} \theta_{i} \tan ^{2} \theta_{i}} \rho_{\lambda, \perp}
$$

Eq. (3.12b) should be:
$\left.b^{2}=\frac{1}{2}\left\{\left[\left(n^{2}-k^{2}-\sin ^{2} \theta_{i}\right)^{2}+4 n^{2} k^{2}\right]^{1 / 2}-\left(n^{2}-k^{2}-\sin ^{2} \theta_{i}\right)\right]\right\}$
Eq. (3.28) should be

$$
\varepsilon_{n}(T)=0.0348 T \sqrt{r_{e .273}}
$$

Top equation, $4^{\text {th }}$ line T_{3} should be ϑ_{3}

In Example 9.1, second paragraph of solution, first line, Equation 9.32c should be Equation 9. 33c; next to last line, same paragraph, same correction; last line, Equation 9.32a should be Equation 9. 33a.

In third paragraph of solution, last line, Equation 9.32d should be Equation 9. 33d and Equation 9.32b should be Equation 9. 33b.
$4^{\text {th }}$ paragraph in the solution, $\omega=\omega_{0}\left(\frac{T}{T_{0}}\right)^{2}$ should be $\omega=\omega_{0}\left(\frac{T}{T_{0}}\right)^{1 / 2}$ In fifth paragraph of solution, $u=\lambda \alpha / \omega$ should be $u=X \alpha / \omega$.
and, in $6^{\text {th }}$ paragraph, $P_{e}=\left[\frac{P}{P_{0}}+\frac{P}{P_{0}}(b-1)\right]$ should be $P_{e}=\left[\frac{P}{P_{0}}+\frac{P}{P_{0}}(b-1)\right]^{n}$
First line in Section 9.3.3.1 should read: "To find solutions for total radiative energy transfer, the transfer equations described in Chapter 1"
Fig. 9.14, In caption, bar/cm should be bar.cm
Fig. 9.15, In caption, bar/cm should be bar.cm
In Example 9.5, 4th line of solution, labels a_{1}, a_{2}, a_{3} should be a_{0}, a_{1}, a_{2}.

Third line from bottom, (bar•atm) should be (bar•cm)

First sentence in Section 10.3 .1 should refer to (Equation 1.63) and not (Equation 1.24). In Eq. 10.75b, in the next to last term, the $E_{\lambda b, g}$ should read $E_{\lambda b, 2}$ so the equation becomes:

$$
-F_{2-1} \frac{1-\epsilon_{\lambda, 1}}{\epsilon_{\lambda, 1}} \bar{\lambda}_{\lambda, 2-1} q_{\lambda, 1}+\frac{1}{\epsilon_{\lambda, 2}} q_{\lambda, 2}=-F_{2-1} \bar{t}_{\lambda, 2-1} E_{\lambda b, 1}-F_{2-1} \bar{\alpha}_{\lambda, 2-1} E_{\lambda b, 2}+E_{\lambda b, g}
$$

In Table 10.1, the final exponential integral term in the second and third table entries should be

$$
E_{3}\left[\kappa_{\lambda} h \sqrt{(R / h)^{2}+1}\right]
$$

Example 10.6, final equation should be

$$
Q_{i}=G A=\epsilon_{\mathrm{CO}_{2}} \sigma T_{g}^{4} A=0.170 \times 5.6704 \times 10^{-8}(1100)^{4} \times 16 \pi=709 \mathrm{~kW}
$$

In Eq. (11.11), last term, should be + , not -
In Eq. (11.17), last term, should be + , not -
In text line after Eq. 12.47, Equation 15.38 should be Equation 12.38
Eq. (13.90) should be $\sigma T^{4}(\tau)=\sigma T_{1}^{4}-\left(\tau+1 / \epsilon_{1}-1 / 2\right) q_{r}$
One line above Eq. (13.134: Equation 17.127 should be Equation 13.127.
Liner Eq. (13.156), Equation 17.49 should be Equation 13.156
In Homework Problem 14-4, $(\lambda=0.514 \mathrm{~mm})$ should be $\lambda=0.514 \mu \mathrm{~m})$
Eq. (15.5) should be $\quad C_{\lambda}=C_{\lambda, \kappa}+C_{\lambda, s} \quad Q_{\lambda}=Q_{\lambda, \kappa}+Q_{\lambda, s}$
Second paragraph, line 3 , replace x with ξ.
In Eq. (15.24), top relation should be

$$
C_{s, \lambda}=\frac{24 \pi^{3} V^{2}\left[\left(n^{2}-k^{2}-1\right)\left(n^{2}-k^{2}+2\right)+4 n^{2} k^{2}\right]^{2}+36 n^{2} k^{2}}{\lambda^{4}\left[\left(n^{2}-k^{2}+2\right)^{2}+4 n^{2} k^{2}\right]^{2}}
$$

Two lines above Eq. (15.37), replace "absorption efficiency..." with "absorption crosssection..."
In requirement (ii), line 2, replace "decrease" with "decreases"
Solutions to HW 15.1 should be:
Answer: $1.35 \times 10^{-5} \mu \mathrm{~m}^{2} ; 3.90 \times 10^{9} \mathrm{~cm}^{-3} ; 1.64 \times 10^{-8} ; 31.6 \times 10^{-8} \mathrm{~g}$.
paragraph 1, line 6. Add "(RTE)" after "radiative transfer equation".
paragraph 3, lines 2 and 3 . Should read "In addition, the RTE can be derived from [...]" instead of "In addition, the radiative transfer equation (RTE) can be derived from [...]". paragraph 3 , line 3 . Change "EM" to "electromagnetic".
paragraph 3, line 4. Change "Section 14.5 " to "Section 14.6 ".
paragraph 4, line 13 . Should read "[...] by exciting surface waves having a high degree [...]" instead of "[...] by exciting surface waves a having a high degree [...]".
paragraph 5, line 3. Change "micro electro-mechanical systems" to "micro-electromechanical systems".
Equation (16.12). The left-hand side of Eq. (16.12) should be " $u(\omega, T)$ " and not " $u(\omega T)$ ". paragraph 1, line 3. Remove "the" before "near-field thermal radiation".

802 Equation (16.26). There is an error in the last g-term on the right-hand side of Eq. (16.26). The subscript should be " $s l \rho \alpha$ " instead of " $s l \phi \alpha$ ". For clarity, the correct Eq. (16.26) is given below:

$$
q_{\omega, s l}\left(z_{c}\right)=\frac{k_{0}^{2} \Theta\left(\omega, T_{s}\right)}{\pi^{2}} \operatorname{Re}\left\{i K_{s}^{\prime \prime}(\omega) \int_{0}^{\infty} k_{\rho} d k_{\rho} \int_{z} d z^{\prime}\binom{g_{s l \rho \alpha}^{E}\left(k_{\rho}, z_{c}, z^{\prime}, \omega\right) g_{s l \phi \alpha}^{H^{*}}\left(k_{\rho}, z_{c}, z^{\prime}, \omega\right)}{-g_{s l \phi \alpha}^{E}\left(k_{\rho}, z_{c}, z^{\prime}, \omega\right) g_{s l \rho \alpha}^{H^{*}}\left(k_{\rho}, z_{c}, z^{\prime}, \omega\right)}\right\}
$$

810 paragraph 3, line 5. The reference should be "Kittel et al. (2005b)" and not "Kittel et al. (2005)".

815 Homework problem 16.7. The reference should be "Greffet et al. (2002)" and not "Greffet et al. (1998)".

